Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLOS Digit Health ; 3(3): e0000478, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38536802

RESUMEN

Weaning patients from mechanical ventilation (MV) is a critical and resource intensive process in the Intensive Care Unit (ICU) that impacts patient outcomes and healthcare expenses. Weaning methods vary widely among providers. Prolonged MV is associated with adverse events and higher healthcare expenses. Predicting weaning readiness is a non-trivial process in which the positive end-expiratory pressure (PEEP), a crucial component of MV, has potential to be indicative but has not yet been used as the target. We aimed to predict successful weaning from mechanical ventilation by targeting changes in the PEEP-level using a supervised machine learning model. This retrospective study included 12,153 mechanically ventilated patients from Medical Information Mart for Intensive Care (MIMIC-IV) and eICU collaborative research database (eICU-CRD). Two machine learning models (Extreme Gradient Boosting and Logistic Regression) were developed using a continuous PEEP reduction as target. The data is splitted into 80% as training set and 20% as test set. The model's predictive performance was reported using 95% confidence interval (CI), based on evaluation metrics such as area under the receiver operating characteristic (AUROC), area under the precision-recall curve (AUPRC), F1-Score, Recall, positive predictive value (PPV), and negative predictive value (NPV). The model's descriptive performance was reported as the variable ranking using SHAP (SHapley Additive exPlanations) algorithm. The best model achieved an AUROC of 0.84 (95% CI 0.83-0.85) and an AUPRC of 0.69 (95% CI 0.67-0.70) in predicting successful weaning based on the PEEP reduction. The model demonstrated a Recall of 0.85 (95% CI 0.84-0.86), F1-score of 0.86 (95% CI 0.85-0.87), PPV of 0.87 (95% CI 0.86-0.88), and NPV of 0.64 (95% CI 0.63-0.66). Most of the variables that SHAP algorithm ranked to be important correspond with clinical intuition, such as duration of MV, oxygen saturation (SaO2), PEEP, and Glasgow Coma Score (GCS) components. This study demonstrates the potential application of machine learning in predicting successful weaning from MV based on continuous PEEP reduction. The model's high PPV and moderate NPV suggest that it could be a useful tool to assist clinicians in making decisions regarding ventilator management.

2.
JMIR Med Inform ; 12: e50642, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38329094

RESUMEN

Background: Hypoxia is an important risk factor and indicator for the declining health of inpatients. Predicting future hypoxic events using machine learning is a prospective area of study to facilitate time-critical interventions to counter patient health deterioration. Objective: This systematic review aims to summarize and compare previous efforts to predict hypoxic events in the hospital setting using machine learning with respect to their methodology, predictive performance, and assessed population. Methods: A systematic literature search was performed using Web of Science, Ovid with Embase and MEDLINE, and Google Scholar. Studies that investigated hypoxia or hypoxemia of hospitalized patients using machine learning models were considered. Risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool. Results: After screening, a total of 12 papers were eligible for analysis, from which 32 models were extracted. The included studies showed a variety of population, methodology, and outcome definition. Comparability was further limited due to unclear or high risk of bias for most studies (10/12, 83%). The overall predictive performance ranged from moderate to high. Based on classification metrics, deep learning models performed similar to or outperformed conventional machine learning models within the same studies. Models using only prior peripheral oxygen saturation as a clinical variable showed better performance than models based on multiple variables, with most of these studies (2/3, 67%) using a long short-term memory algorithm. Conclusions: Machine learning models provide the potential to accurately predict the occurrence of hypoxic events based on retrospective data. The heterogeneity of the studies and limited generalizability of their results highlight the need for further validation studies to assess their predictive performance.

3.
Artif Intell Med ; 144: 102659, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37783541

RESUMEN

Deep Learning (DL) models have received increasing attention in the clinical setting, particularly in intensive care units (ICU). In this context, the interpretability of the outcomes estimated by the DL models is an essential step towards increasing adoption of DL models in clinical practice. To address this challenge, we propose an ante-hoc, interpretable neural network model. Our proposed model, named double self-attention architecture (DSA), uses two attention-based mechanisms, including self-attention and effective attention. It can capture the importance of input variables in general, as well as changes in importance along the time dimension for the outcome of interest. We evaluated our model using two real-world clinical datasets covering 22840 patients in predicting onset of delirium 12 h and 48 h in advance. Additionally, we compare the descriptive performance of our model with three post-hoc interpretable algorithms as well as with the opinion of clinicians based on the published literature and clinical experience. We find that our model covers the majority of the top-10 variables ranked by the other three post-hoc interpretable algorithms as well as the clinical opinion, with the advantage of taking into account both, the dependencies among variables as well as dependencies between varying time-steps. Finally, our results show that our model can improve descriptive performance without sacrificing predictive performance.


Asunto(s)
Aprendizaje Profundo , Delirio , Humanos , Registros Electrónicos de Salud , Redes Neurales de la Computación , Cuidados Críticos , Delirio/diagnóstico
4.
JAMIA Open ; 5(2): ooac048, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35702626

RESUMEN

Introduction: Delirium occurrence is common and preventive strategies are resource intensive. Screening tools can prioritize patients at risk. Using machine learning, we can capture time and treatment effects that pose a challenge to delirium prediction. We aim to develop a delirium prediction model that can be used as a screening tool. Methods: From the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care version III (MIMIC-III) database, patients with one or more Confusion Assessment Method-Intensive Care Unit (CAM-ICU) values and intensive care unit (ICU) length of stay greater than 24 h were included in our study. We validated our model using 21 quantitative clinical parameters and assessed performance across a range of observation and prediction windows, using different thresholds and applied interpretation techniques. We evaluate our models based on stratified repeated cross-validation using 3 algorithms, namely Logistic Regression, Random Forest, and Bidirectional Long Short-Term Memory (BiLSTM). BiLSTM represents an evolution from recurrent neural network-based Long Short-Term Memory, and with a backward input, preserves information from both past and future. Model performance is measured using Area Under Receiver Operating Characteristic, Area Under Precision Recall Curve, Recall, Precision (Positive Predictive Value), and Negative Predictive Value metrics. Results: We evaluated our results on 16 546 patients (47% female) and 6294 patients (44% female) from eICU-CRD and MIMIC-III databases, respectively. Performance was best in BiLSTM models where, precision and recall changed from 37.52% (95% confidence interval [CI], 36.00%-39.05%) to 17.45 (95% CI, 15.83%-19.08%) and 86.1% (95% CI, 82.49%-89.71%) to 75.58% (95% CI, 68.33%-82.83%), respectively as prediction window increased from 12 to 96 h. After optimizing for higher recall, precision and recall changed from 26.96% (95% CI, 24.99%-28.94%) to 11.34% (95% CI, 10.71%-11.98%) and 93.73% (95% CI, 93.1%-94.37%) to 92.57% (95% CI, 88.19%-96.95%), respectively. Comparable results were obtained in the MIMIC-III cohort. Conclusions: Our model performed comparably to contemporary models using fewer variables. Using techniques like sliding windows, modification of threshold to augment recall and feature ranking for interpretability, we addressed shortcomings of current models.

5.
PLoS One ; 15(7): e0235424, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32614874

RESUMEN

Progress of machine learning in critical care has been difficult to track, in part due to absence of public benchmarks. Other fields of research (such as computer vision and natural language processing) have established various competitions and public benchmarks. Recent availability of large clinical datasets has enabled the possibility of establishing public benchmarks. Taking advantage of this opportunity, we propose a public benchmark suite to address four areas of critical care, namely mortality prediction, estimation of length of stay, patient phenotyping and risk of decompensation. We define each task and compare the performance of both clinical models as well as baseline and deep learning models using eICU critical care dataset of around 73,000 patients. This is the first public benchmark on a multi-centre critical care dataset, comparing the performance of clinical gold standard with our predictive model. We also investigate the impact of numerical variables as well as handling of categorical variables on each of the defined tasks. The source code, detailing our methods and experiments is publicly available such that anyone can replicate our results and build upon our work.


Asunto(s)
Benchmarking , Cuidados Críticos/normas , Aprendizaje Automático , Algoritmos , Reglas de Decisión Clínica , Conjuntos de Datos como Asunto , Mortalidad Hospitalaria , Humanos , Tiempo de Internación , Programas Informáticos
6.
Environ Monit Assess ; 192(2): 148, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31997006

RESUMEN

Wastewater treatment plants use many sensors to control energy consumption and discharge quality. These sensors produce a vast amount of data which can be efficiently monitored by automatic systems. Consequently, several different statistical and learning methods are proposed in the literature which can automatically detect faults. While these methods have shown promising results, the nonlinear dynamics and complex interactions of the variables in wastewater data necessitate more powerful methods with higher learning capacities. In response, this study focusses on modelling faults in the oxidation and nitrification process. Specifically, this study investigates a method based on deep neural networks (specifically, long short-term memory) compared with statistical and traditional machine-learning methods. The network is specifically designed to capture temporal behaviour of sensor data. The proposed method is evaluated on a real-life dataset containing over 5.1 million sensor data points. The method achieved a fault detection rate (recall) of over 92%, thus outperforming traditional methods and enabling timely detection of collective faults.


Asunto(s)
Aprendizaje Profundo , Monitoreo del Ambiente , Aguas Residuales , Aprendizaje Automático , Redes Neurales de la Computación
7.
JMIR Med Inform ; 7(2): e12239, 2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31066697

RESUMEN

BACKGROUND: Novel approaches that complement and go beyond evidence-based medicine are required in the domain of chronic diseases, given the growing incidence of such conditions on the worldwide population. A promising avenue is the secondary use of electronic health records (EHRs), where patient data are analyzed to conduct clinical and translational research. Methods based on machine learning to process EHRs are resulting in improved understanding of patient clinical trajectories and chronic disease risk prediction, creating a unique opportunity to derive previously unknown clinical insights. However, a wealth of clinical histories remains locked behind clinical narratives in free-form text. Consequently, unlocking the full potential of EHR data is contingent on the development of natural language processing (NLP) methods to automatically transform clinical text into structured clinical data that can guide clinical decisions and potentially delay or prevent disease onset. OBJECTIVE: The goal of the research was to provide a comprehensive overview of the development and uptake of NLP methods applied to free-text clinical notes related to chronic diseases, including the investigation of challenges faced by NLP methodologies in understanding clinical narratives. METHODS: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed and searches were conducted in 5 databases using "clinical notes," "natural language processing," and "chronic disease" and their variations as keywords to maximize coverage of the articles. RESULTS: Of the 2652 articles considered, 106 met the inclusion criteria. Review of the included papers resulted in identification of 43 chronic diseases, which were then further classified into 10 disease categories using the International Classification of Diseases, 10th Revision. The majority of studies focused on diseases of the circulatory system (n=38) while endocrine and metabolic diseases were fewest (n=14). This was due to the structure of clinical records related to metabolic diseases, which typically contain much more structured data, compared with medical records for diseases of the circulatory system, which focus more on unstructured data and consequently have seen a stronger focus of NLP. The review has shown that there is a significant increase in the use of machine learning methods compared to rule-based approaches; however, deep learning methods remain emergent (n=3). Consequently, the majority of works focus on classification of disease phenotype with only a handful of papers addressing extraction of comorbidities from the free text or integration of clinical notes with structured data. There is a notable use of relatively simple methods, such as shallow classifiers (or combination with rule-based methods), due to the interpretability of predictions, which still represents a significant issue for more complex methods. Finally, scarcity of publicly available data may also have contributed to insufficient development of more advanced methods, such as extraction of word embeddings from clinical notes. CONCLUSIONS: Efforts are still required to improve (1) progression of clinical NLP methods from extraction toward understanding; (2) recognition of relations among entities rather than entities in isolation; (3) temporal extraction to understand past, current, and future clinical events; (4) exploitation of alternative sources of clinical knowledge; and (5) availability of large-scale, de-identified clinical corpora.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...